IMO 2008 - P5

Avatar de Usuario
Gianni De Rico

FOFO 7 años - Mención Especial
Mensajes: 829
Registrado: Vie 16 Sep, 2016 6:58 pm
Medallas: 1
Nivel: Exolímpico
Ubicación: Rosario
Contactar:

IMO 2008 - P5

Mensaje sin leer por Gianni De Rico » Sab 07 Jul, 2018 12:32 pm

Sea $n$ y $k$ enteros positivos tales que $k\geqslant n$ y $k-n$ es par. Se tienen $2n$ lámparas numeradas $1,2,\ldots ,2n$, cada una de las cuales puede estar encendida o apagada. Inicialmente todas las lámparas están apagadas. Se consideran las sucesiones de pasos: en cada paso se selecciona exactamente una lámpara y se cambia su estado (si está apagada se enciende, si está encendida se apaga).
Sea $N$ el número de sucesiones de $k$ pasos al cabo de los cuales las lámparas $1,2,\ldots ,n$ quedan todas encendidas, y las lámparas $n+1,\ldots ,2n$ quedan todas apagadas.
Sea $M$ el número de sucesiones de $k$ pasos al cabo de los cuales las lámparas $1,2,\ldots ,n$ quedan todas encendidas, y las lámparas $n+1,\ldots ,2n$ quedan todas apagadas sin haber sido nunca encendidas.
Calcular la razón $\frac{N}{M}$.
[math]

Responder