Ibero 2003 - P3

Problemas que aparecen en el Archivo de Enunciados.
Avatar de Usuario
Gianni De Rico

FOFO 7 años - Mención Especial-FOFO 7 años OFO - Medalla de Oro-OFO 2019 COFFEE - Jurado-COFFEE Matías Saucedo OFO - Jurado-OFO 2020 FOFO Pascua 2020 - Jurado-FOFO Pascua 2020
COFFEE - Jurado-COFFEE Carolina González COFFEE - Jurado-COFFEE Ariel Zylber COFFEE - Jurado-COFFEE Iván Sadofschi FOFO 10 años - Jurado-FOFO 10 años
Mensajes: 1551
Registrado: Vie 16 Sep, 2016 6:58 pm
Medallas: 9
Nivel: Exolímpico
Ubicación: Rosario
Contactar:

Ibero 2003 - P3

Mensaje sin leer por Gianni De Rico »

Pablo estaba copiando el siguiente problema:

Considere todas las sucesiones de $2004$ números reales $\left (x_0,x_1,x_2,\ldots ,x_{2003}\right )$ tales que$$\begin{align*}x_0 & =1, \\
0\leqslant x_1 & \leqslant 2x_0, \\
0\leqslant x_2 & \leqslant 2x_1, \\
& \vdots \\
0\leqslant x_{2003} & \leqslant 2x_{2002} \\
\end{align*}$$Entre todas estas sucesiones, determine aquella para la cual la siguiente expresión toma su mayor valor: $S=\ldots$.

Cuando Pablo iba a copiar la expresión de $S$ le borraron la pizarra. Lo único que pudo recordar es que $S$ era de la forma$$S=\pm x_1\pm x_2\pm \cdots \pm x_{2002}+x_{2003},$$donde el último término, $x_{2003}$, tenía coeficiente $+1$, y los anteriores tenían coeficiente $+1$ ó $-1$. Demuestre que Pablo, a pesar de no tener el enunciado completo, puede determinar con certeza la solución del problema.
Esto es trivial por el teorema de Bolshonikov demostrado en un bar de Bielorrusia en 1850

Responder