Archivo de Enunciados • Competencias de Argentina • Nacional • 2002 • Nivel 1


Problema 1
Se consideran todos los números naturales de nueve dígitos que utilizan exclusivamente los dígitos $1$, $2$ y $3$ (el menor es el $111111111$ y el mayor es el $333333333$). Cada uno de estos números está escrito en una tarjeta; se tiene así un mazo de $19683$ tarjetas. David, Juan y Pablo se repartieron las tarjetas de acuerdo con la siguiente regla: si dos tarjetas son de un mismo chico, entonces en al menos una de las nueve posiciones tienen el mismo dígito. Si David tiene el $133221311$ y Juan tiene el $133211311$, determinar cuál de los tres chicos tiene el $123123123$.

Problema 2
En el triangulo [math] sean [math] en el lado [math] tal que [math] y [math] el punto medio de [math]. Denotamos [math] al punto de interseccion de [math] y [math]. Si el area del triangulo [math] es igual a [math], calculaar el area del cuadrilatero [math]

Problema 3
En la casa de Gabriel son muy metódicos. Todos los días hábiles la mamá sale en su moto a la misma hora, a la misma velocidad y por el mismo camino a buscar a Gabriel al colegio. Llega al colegio exactamente a las $12$ horas y de inmediato regresa a su casa con Gabriel, por el mismo camino y a la misma velocidad. Por supuesto, todos los días llegan a la casa exactamente a la misma hora.

Un día, Gabriel salió del colegio más temprano, y a las $11$ horas y $15$ minutos inició la caminata hacia su casa. En el camino se encontró con su mamá, que lo estaba yendo a buscar al colegio, como todos los días. En cuanto se encontraron, regresaron de inmediato a la casa, y llegaron $20$ minutos más temprano que lo habitual.

Determinar cuántos minutos más temprano que lo habitual hubiesen llegado a la casa si Gabriel comenzaba la caminata a las $11$ horas y $33$ minutos.

Nota: Gabriel, que también es metódico, camina siempre a la misma velocidad.

Problema 4
Consideramos los números naturales [math] de tres cifras, todas ellas distintas de cero. Diremos que un número [math] es [math] si el número [math] es múltiplo del número de dos cifras que se obtiene al suprimirle a [math] la primera cifra de la izquierda (es decir, al suprimirle la cifra de las centenas).
Por ejemplo, [math] NO es bueno, porque [math] no es múltiplo de [math].

Hallar todos los números buenos.

Problema 5
Sea $ABC$ un triángulo tal que $A\hat BC=2B\hat CA$; además, si $D$ denota al punto del lado $BC$ tal que $AD$ es bisectriz del ángulo $C\hat AB$, se tiene que $CD=AB$. Calcular las medidas de los ángulos del triángulo $ABC$.

Problema 6
En una caja fuerte hay $128$ bolsas con oro, todas con el mismo aspecto, pero todas de distinto peso. El tesorero quiere determinar las dos bolsas más pesadas y para ello dispone de una balanza de dos platos. La única operación permitida es colocar una bolsa en cada plato y de este modo establecer cuál de las dos es más pesada. Decidir si el tesorero puede lograr su objetivo efectuando $133$ operaciones permitidas. Si la respuesta es afirmativa, indicar la secuencia de pesadas; si es negativa, explicar el porqué.